(x^2)+(5^2)=10^2

Simple and best practice solution for (x^2)+(5^2)=10^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)+(5^2)=10^2 equation:



(x^2)+(5^2)=10^2
We move all terms to the left:
(x^2)+(5^2)-(10^2)=0
We add all the numbers together, and all the variables
x^2-75=0
a = 1; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·1·(-75)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1}=\frac{0-10\sqrt{3}}{2} =-\frac{10\sqrt{3}}{2} =-5\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1}=\frac{0+10\sqrt{3}}{2} =\frac{10\sqrt{3}}{2} =5\sqrt{3} $

See similar equations:

| x.6=-6 | | 2(t+2)=4(t-15) | | 2+14a-9a=-8 | | 304=8(6-4k) | | -65=-3x+7 | | (x−4)23=16(x-4)23=16 | | -26=-11r | | 8x2+40=0 | | -3=4/5x | | 5(2x+6)=-6+26 | | 5x+4+x=2(3x+2) | | 2x+x-14=180 | | 3)3n+4)=54+6n | | x-14=180 | | -2(7-6k)=82 | | 5x+5=6.50 | | 0.6z+12.6=2.7z | | 14=4r−10 | | 2x-x-14=180 | | 30w+326=566 | | g+15=47 | | 6x-7=24x-28 | | 3(5x+2)=25 | | 2x-5x+6=3x | | 83=-3+2(3-5n) | | x/4-1=9x | | 5(3x+9)=-46+61 | | 3(-3x+4)=6(-2x-2) | | -124=31g | | 6(w+6)-8w=34= | | 2b-7=-4 | | z2​=​54 |

Equations solver categories